
Journal of Economics Library 
www.kspjournals.org 

Volume 6                          June 2019                               Issue 2 
 

Technological host-parasites co-evolution 
 

By Mario COCCIAa† 
 

Abctract. The fundamental problem in the field of technology studies is how technology 
evolves and sustains economic change in human society. This study confronts the problem 
here by proposing the theory of technological host-parasites coevolution, an approach that 
may be useful for bringing a new perspective to explain and generalize, whenever possible, 
the evolution of technology in human societies. Technological host-parasites coevolution is a 
mutual symbiotic relationship between a host technology and associated technologies 
directed to satisfy needs and/or to solve problems of human beings. To explore the potential 
of adopting a theory of technological host-parasites coevolution and to predict which 
technologies are likeliest to evolve rapidly, this study implements an empirical test based on 
historical data on the evolution of four example technologies (aircraft, tractor, locomotive 
and bicycle technology) to substantiate the theoretical framework. Empirical evidence is 
broadly consistent with the theoretical expectation that host technologies with many 
associated parasitic technologies advance rapidly, whereas host technologies with fewer 
parasitic technologies improve slowly. This study begins the process of clarifying and 
generalizing, as far as possible, the role of long-run coevolution between technologies in 
complex systems of technology. The proposed theoretical framework also lays a foundation 
for the development of more sophisticated concepts to explain technological and economic 
change in human society. The evolution of technology plays an important role in economic 
and social change of human society. However, little is known about how technologies 
evolve and sustain human progress, despite being a crucial process in socio-ecological 
systems for millennia. This study proposes, for the first time to our knowledge, a concept of 
technological host-parasites coevolution that may be useful for bringing a new perspective 
to explain the evolution of technology. Statistical results suggest that host technologies with 
many associated parasitic technologies have a higher rate of evolution than technologies 
with fewer associated parasitic systems and sub-systems. The mutual symbiotic relationship 
between a host and parasitic technologies seems to be an invariant property driving the 
evolution of technology in human society.  
Keywords. Evolution of technology, Technological parasitism, Technological host-parasites 
coevolution, Technological interaction, Technological evolution, Coevolution, Nature of 
technology, Technological change, Host technology, Technological innovation. 
JEL. B50, B52, O31, O32, O33, O39. 
 

1. Introduction  
he evolution of technology plays an important role in the economic 
and social change of human societies (Basalla, 1988; Freeman & Soete, 
1987; Hosler, 1994; Nelson & Winter, 1982). In 2009, Brian Arthur 

claimed that one of the most important problems to understand regarding 
technology is to explain how it evolves (p.15ff). In this context, 
technological evolution has been compared to biological evolution by many 
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scholars (Arthur, 2009; Basalla, 1988; Solé et al., 2013; Wagner, 2011). The 
similarities between biological and technological evolution have generated 
a considerable literature (see reviews in Erwin & Krakauer, 2004; Solé et al., 
2011). Wagner & Rosen (2014) argued that biological thinking has reduced 
the distance between life sciences and social sciences (cf., Nelson & Winter, 
1982; Dosi, 1988; Solé et al., 2013, 2011). Basalla (1988) suggested that the 
history of technology can profitably be seen as analogous to biological 
evolution. Technological evolution, alongside biological evolution, displays 
radiations, stasis, extinctions, and novelty (Valverde et al., 2007). In general, 
patterns of technological innovation emerge and evolve with technological 
paradigms and trajectories in specific economic, institutional and social 
environments (Dosi, 1988). Hosler (1994, p.3, original italics) argues that the 
development of technology is, at least to some extent, influenced by 
“technical choices”, which express social and political factors, and “technical 
requirements”, imposed by material properties. Arthur & Polak (2006, p.23) 
claim that: “Technology … evolves by constructing new devices and 
methods from ones that previously exist, and in turn offering these as 
possible components—building blocks—for the construction of further new 
devices and elements”. In particular, Arthur (2009, pp.18-19) argues that 
the evolution of technology is due to combinatorial evolution: 
“Technologies somehow must come into being as fresh combinations of 
what already exists.”This combination of components and assemblies is 
organized into systems or modules to some human purpose and has a 
hierarchical and recursive structure: “technologies … consist of component 
building blocks that are also technologies, and these consist of subparts that 
are also technologies, in a repeating (or recurring) pattern” (Arthur, 2009, 
p.38). In addition, Arthur (2009) claims that technology evolution is based 
on “supply” of new technologies assembling existing components and on 
“demand for means to fulfill purposes, the need for novel technologies.” 

 Other scholars suggest that technological evolution is driven by 
solving consequential problems during the engineering process (Coccia, 
2014e, 2016, 2017e; Dosi, 1988; Usher, 1954) andby supporting leadership of 
distinct purposeful organizations -for instance firms- to achieve the 
prospect of a (temporary) profit monopoly and/or competitive advantage 
(Coccia, 2015, 2017a)1. However, it is clear that there are at least some 
aspects of the evolution of technology that these studies have trouble 
explaining. In particular, little is known about how technologies interact 
and create systems in which each component (sub-system) and overall 

1 For other studies concerning source, diffusion and evolution of technology and science, cf., 
Calabrese et al., 2005; Coccia, 2003, 2005, 2005a, 2005b, 2005c, 2005d, 2006, 2006a, 2007, 
2008, 2008a, 2008b, 2008c, 2009, 2010, 2010a, 2012, 2013, 2013a, 2014, 2014a, 2014b, 2014c, 
2014d, 2014e, 2015, 2015a, 2015b, 2015c, 2016, 2016a, 2016b, 2017, 2017a, 2017b, 2017c, 
2017e, 2017f, 2018, 2018a, 2018b, 2018c, 2018d, 2018e, 2018g, 2018h, 2018i, 2018l, 2018m, 
2018n, 2018o, 2018p, 2019, 2019a, 2019b, 2019c, 2019d, 2019e, 2019f, 2019g, 2019h; Coccia & 
Cadario, 2014; Coccia et al., 2015; Coccia & Finardi, 2012, 2013; Coccia & Rolfo, 2009, 2010, 
2013; Coccia & Wang, 2015, 2016. 
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system can continue to evolve in socio-ecological environments. In this 
research context, our study has two goals. The first is to define the concept 
of technological host-parasites coevolution, a new perspective that may 
explain and generalize aspects of technological evolution in human 
societies. The second is to provide an empirical test based on historical data 
of the evolution of four example technologies to substantiate the theoretical 
framework. Statistical evidence hint at general properties of technological 
evolution, and, in particular, provide some insights into which technologies 
have greater potential to advance rapidly. This new theoretical framework 
of technological host-parasites coevolution lays a foundation for the 
development of more sophisticated concepts and theories to predict 
technological coevolution and explain economic change in human society. 

 
2. Theoretical framework 
2.1. Basic concepts  
This study analyzes the interaction between technological 

breakthroughs in host-parasite systems, in a broad analogy with ecology. 
Parasites (from Greek para = near; sitos = food) are defined as any life form 
that finds their ecological niche in another living form. Host–parasite 
interactions can be of different types. Under certain conditions, a host–
parasite relationship results in commensalism (a class of relationships 
between two organisms where one organism benefits from the other 
without affecting it), in mutualism (two organisms of different species exist 
in a relationship in which each individual benefits from the activity of the 
other) orin symbiosis (long-term interaction between two different 
biological species that live and evolve together). In other conditions, the 
relationship may result in parasitism. Mutualism, commensalism, and 
symbiosis represent a spectrum of interactions without clear cut-offs that 
distinguish them from parasitism, and each relationship represents an end-
point of an evolutionary development (Poulin, 2006). In particular, 
parasitism is an interaction that evolves over time towards commensalism, 
mutualism and symbiosis (Price, 1991). The symbiosis is also increasingly 
recognized as an important selective force behind interdependent 
coevolution (Smith, 1991). Some scholars argue that the host-parasite 
interaction tends to generate stepwise coevolutionary processes within 
systems (cf., Price, 1991; Coccia, 2018). 
 

2.2. Philosophical foundations of the theory of technological 
parasitism 

Although models of technological evolution exist to explain the patterns 
of technological innovations (Sahal, 1981), there is no unified theory of 
coevolution that can explain the emergence of complex interaction patterns 
of different technologies. Interactions between technologies have profound 
effects on technological evolution, but despite their importance, little is 
known on the general structure and properties of this process. An 
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important step towards explaining the fundamental interactions between 
and within systems of technology with technological host-parasites 
coevolution or technological parasitism is to first clarify the concept of 
complexity and complex systems. Simon (1962, p.468) states that: “a 
complex system [is]… one made up of a large number of parts that interact 
in a non simple way …. complexity frequently takes the form of hierarchy, 
and …. a hierarchic system … is composed of interrelated subsystems, each 
of the latter being, in turn, hierarchic in structure until we reach some 
lowest level of elementary subsystem.” McNerney et al. (2011, p.9008) argue 
that: “The technology can be decomposed into n components, each of 
which interacts with a cluster of d−1 other components.” This modularity 
can be one of the most important features of complex adaptive systems (cf., 
Arthur, 2009). Another characteristic of complex systems is the interaction 
between systems and sub-systems such that the hierarchy can be defined in 
terms of the intensity of interaction of the elements of the system. A 
distinction in hierarchic systems is the interactions between systems and 
the interactions within systems—i.e., among the parts of those systems. In 
this context, Simon (1962, p.474) points out that hierarchies have the 
property of nearly decomposable systems: “(a) in a nearly decomposable 
system, the short run behavior of each of the component subsystems is 
approximately independent of the short-run behavior of the other 
components; (b) in the long run, the behavior of any one of the components 
depends in only an aggregate way on the behavior of the other 
components.” 

The primary goal of this study, based on theoretical background 
discussed above, is to define the concept of technological host-parasites 
coevolution or technological parasitism; and that definition should meet 
the conditions of independence, generality, epistemological applicability 
and empirical correctness.  

 
3. A proposed definition of technological host-parasites 

coevolution 
Suppose that: 
a) Technology is defined as a complex system that is composed of 

more than one component and a relationship that holds between each 
component and at least one other element in the system. The technology is 
selected and adapted in the Environment E to satisfy needs, achieve goals, 
and/or solve problems in human society. 

b) Interaction between technologies is a reciprocal adaptation between 
technologies with interrelationship of information/resources/energy and 
other physical phenomena to satisfy needs, achieve goals, and/or solve 
problems in human society.  

c) Coevolution of technologies is the evolution of reciprocal 
adaptations in a complex system that generates innovation—i.e., a 
modification and/or improvement of technologies that interact and adapt in 
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a complex system to satisfy needs, achieve goals, and/or solve problems of 
human society over space and time. 

d) The simplest possible case involves only two technologies; of 
course, the concept can be generalized for a complex system including a 
finite number of technologies. 

Definition of the technological host-parasites coevolution (‘iff’ is shorthand for 
‘if and only if’):  

P is a parasitic technology in H (host or master technology) iff during its 
life cycle P is able to interact and adapt into the complex system of H, 
generating coevolutionary processes to satisfy needs, achieve goals, and/or 
solve problems in human society.  

Remark: if host or master technology Hi can fulfill needs and purposes in 
society without Pj, and Pj can fulfill purposes if and only if it interacts with 
other technological systems Hi, then Pj is a parasitic technology (∀i=1, …, n; 
∀j=1, …, m).  

Parasitic technologies Pj are often sub-systems embedded within and 
primarily functional in the ecological system of host (or master) 
technologies Hi. For instance, the dynamo (electric generator) is a parasitic 
technology when installed as an accessory to bicycles and other machines. 
Audio headphones are parasitic technologies of many electronic/audio 
devices. Technology Pjcan be a parasite of different technologies Hi; 
technology Hi can be a host of different parasitic technologies Pj (e.g., 
mobile devices are host of software applications, headphones, Bluetooth 
technology, etc.). A technological innovation with many parasitic 
technologies can be considered a complex system with a high hierarchy (as 
defined by Simon, 1962) in comparison to a technological innovation with 
low number of parasitic technologies (i.e., less associated sub-systems of 
technology). To put it differently, a technology with a high hierarchy is 
associated with a higher number of technological parasites than 
technologies with less hierarchy in their system, such as aircraft vs. bicycle 
technology. In general, many technologies Pj do not function as 
independent systems themselves, but de facto they depend on other 
technologies Hi to form a complex system of parts that interact in a non-
simple way (cf., Coccia, 2018m). Moreover, the diffusion and adaptation of 
parasitic technologies as complex adaptive systems depend on market 
forces, social networks, institutions, technical choices, and technical 
requirements over time and space (cf., Anadon et al., 2016; Coccia, 2010, 
2017; Dosi, 1988; Kreindler & Peyton Young, 2014; Hosler, 1994). Figure 1 
visualizes a technological host-parasite system. 
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Figure 1. Atechnological host-parasite system 

 
4. Study design 
The statistical evidence here offers a preliminary assessment of the 

theory of technological host-parasites coevolution, considering historical 
data from the developmental trajectory of four technologies:    

• Passenger aircraft, 1932-1965 CE (Current Era) and 2014-2017 CE 
• Farm tractors, 1920-1968 CE 
• Freight locomotives, 1904-1967 CE 
• Road racing bicycles, 1901-2017 CE 
Sources of aircraft, tractor, and locomotive data are tables published by 

Sahal (1981, pp.341-346; cf. also pp.321-330, originally sourced from trade 
literature; additional data for aircraft technology are from Lufthansa 
magazine, 2014; 2017. These data are also documented in supporting 
information here). The cycling data were archived by McGann & McGann 
(2006; Bicycle race data, 2017). In particular, this study compares aircraft 
technology (that is assumed to be a complex technological system with 
many interactions intra- and inter- parasitic technologies within a host 
technology) to other less complex technological innovations, such as the 
racing bicycle, farm tractor and freights locomotive. In particular, the high 
complexity of aircraft technology is due to the integration of many 
technology components and interaction between parasitic technologies 
necessary to safely meet the requirements—i.e., meet human needs or solve 
problems—of manned heavier-than-air flight. In fact, aircraft are 
characterized by several subsystems and associated air-to-air and air-to-
ground systems of technology with intra- and inter-component interaction 
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to be able to fly and satisfy human needs (main component technologies in 
aircraft are:  jet engine, cockpit, slats, spoiler, aileron, flaps, elevator, 
rudder, radar, vertical and horizontal stabilizer, etc.; cf., NASA, 2017). 
Moreover, in the initial stage of development many of the components, 
particularly electronics, were not essential to tractor and locomotive 
technology (cf., Sahal, 1981). Evolution of these technologies is measured 
with Functional Measures of Technology (FMT) over time to take into 
account both major and minor innovations supporting technical 
performance and efficiency of technology (Sahal, 1981, pp.27-29). FMTs 
applied here are:  

1.  for passenger aircraft: maximum sustained airspeed in miles per 
hour over 1932-1965 CE and 2014-2017 CE 

2.  for farm tractors: mechanical efficiency (ratio of drawbar 
horsepower to belt or power take-off –PTO- horsepower) over 1920-1968 
CE 

3.  for freight locomotives: tractive effort in pounds over 1904-1967 CE 
4.  for road racing bicycles: the increase in efficiency2, over 1901-2017 

CE (cf., Appendix) 
The Functional Measures of Technology i in t (FMTi, t) are systematized 

in a comparable framework by applying the following standardization 
formula for the technology i in t:  

 
𝜑𝜑𝑖𝑖𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖−𝜇𝜇𝑖𝑖

𝜎𝜎𝑖𝑖
         (1) 

 
where: 

ϕit = standardized FMTit  (Functional Measures of Technology i at t=time)  
FMTit= Functional Measures of Technologyi at the year t 
μt = arithmetic mean of the FMT over a period t 
σt  = standard deviation of the FMT over t 

 
Remark: ϕit is negative when the raw score is below the arithmetic mean, 

positive when it is above. A zero value of ϕit indicates that the raw value is 
equal to the arithmetic mean.  

This approach compares the technologies described above considering 
similar patterns of technological development from the initial stage for each 
technology. Aircraft data are 34 years (1932-1965 CE), and for the purpose 
of comparing these different technologies, we have focused our statistical 
analysis on trends of the first 34 years available for the other three datasets. 

2 Efficiency is a metric of how much power generated by the cyclist is translated to forward 
motion. Because the bicycle is the only example of human-powered equipment discussed 
here, and because of improvements in athletes’ training (and performance-enhancing 
drugs) it was necessary to try and isolate the innovation in racing bicycles from the 
performance of the rider. A detailed explanation of the bicycle FMT is offered in the 
additional materials (supporting information) section, but briefly this measure is derived 
from average speeds of world-class races while using data from contemporaneous 
running events (marathons) to control for rider performance improvement.  
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The statistical analysis also presents a comparison of aircraft vs. bicycle 
technology for a long run represented by 117 years for bicycle technology 
and 85 years for aircraft technology (data sparse after 1967 for latter 
technology; long-run data for freight locomotive and farm tractor were not 
available). Note that in all of these examples, the first year represented is 
not the year of invention; instead these data all come from a time period 
approximately thirty years after the original invention, when data from 
established (but nascent) industries and FMT metrics are available (cf., 
Sahal, 1981). 

The time series of each technology are estimated with a simple 
regression analysis to assess the coefficients of regression of the evolution 
of these technologies under study here.  

Specification of the linear model is: 
 

yi,t= β0+ β1 t + εi,t        (2) 
 
yi,t= Standardized FMTit  Functional Measures of Technology i, t 
t = Time 
εi,t=error term 
i=technology=1, 2, 3, 4 
In the presence of a specific scatter of empirical data for a technology, 

the study design here estimates the most appropriate relation, such as 
cubic, power, compound or exponential model. These models of simple 
regression are estimated with Ordinary Least Squares (OLS). Statistical 
analyses are performed with the Statistics Software SPSS version 24. The 
expectation here (per the theory and the computational model introduced) 
is that aircraft technology, as a complex technology with many parasitic 
technologies, will show more technological development than the other 
technologies with less parasitic technologies.  

 
5. Results 
The second priority of this study is to explore empirical, historical data 

on the evolution of four example technologies. In particular, the results of 
the historical data for the development of four technologies data assess the 
theory of technological host-parasites coevolution. The results of this study, 
based on aircraft, tractor, locomotive, and bicycle technologies are shown in 
Figure 2. In particular, the results reveal that the passenger aircraft 
technology, a more complex technology with many parasitic technologies 
and considerable interaction between associated technologies, has the 
fastest rate of evolution. This empirical finding of faster evolution of 
technology associated with high number of parasitic technologies is also 
confirmed in the long run when aircraft technology is compared with 
bicycle technology (Figure 3)3.  

3Data of bicycle technology are from 1901 to 2017, whereas data of aircraft technology are 
from 1932-1965. In order to analyze the long-run evolution of these two technologies with 
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The statistical evidence here suggests that host (or master) technologies 

with more technological parasites (and technological interactions, e.g., 
aircraft technology) have a rapid evolution of technology in the long run. 
Technologies with fewer parasitic technologies and a low level of 
interaction with associated technologies improve more slowly, such as 
racing bicycles (Fig. 2 and 3). Overall, this empirical evidence is consistent 
with the theory of technological host-parasites coevolution. Properties and 
predictions of the evolution of technology with technological parasitism are 
as follows. 
 

 
Figure 2.Evolution of racing bicycle, farm tractor, freight locomotive and passenger 

aircraft technology over medium run (based on empirical data). 
Note: The bicycle is a less complex technology with fewer parasitic technologies than aircraft 

technology. The temporal units (years) on x-axis are from 1 to m, where 1 is the initial year of data of the 
technology (i.e., 1920 for tractor technology; 1904 for locomotive technology, 1901 for bicycle and 1932 

for aircraft technology). Period under study here is 34 years for having a similar time span of data 
between technologies. y-axis indicates the Functional Measures of Technology standardized. For the 

tractor, locomotive and bicycle technologies, the estimated relationships of linear models (yi,t= β0+ β1×t 
+ εi,t), based on empirical data, reveal: for farm tractor technology (1920-1953) unstandardized 

coefficient beta is β1=0.71, standardized coefficient is 0.899 (p-value < 0.001, F=114.10, sig.=0.001, Adjusted 
R2=0.80); for freight locomotive technology (1904-1937), unstandardized β1=840.11, standardized 

coefficient = 0.998 (p-value< 0.001, F=9444.85, sig.= 0.001, Adjusted R2=0.997); for racing bicycle 
technology (1901-1934) unstandardized β1=1.35, standardized coefficient is 0.392 (p-value < 

0.05, F=5.82, sig.= 0.022, Adjusted R2=0.13). The trend of passenger aircraft technology (1932-1965), a 
complex technology with many parasitic and associated technologies, fits a compound model (ln yi,t= 

ln β0+ β1 ln time + εi,t ). Results of the estimated relation of aircraft technology are: unstandardized 
β1=1.03 (p-value < 0.001, F=457.66, sig.= 0.001, Adjusted R2=0.93). Aircraft technology has also a 

standardized coefficient beta higher than other technologies: β1=2.629. Empirical evidence here shows 
the rapid evolution of aircraft technology compared to other technologies. This result in aircraft 

technology can be explained by the high number of parasitic technologies (and interaction) within and 
between this specific system of technology. 

 

a higher (aircraft) and lower (bicycle) complexity and number of parasitic technologies, 
data of aircraft technology are integrated with cruising speed of Lufthansa Fleet of Airbus, 
Boing, Boing BBJ, Embraer and Bombardier from 2014 to 2017 (Lufthansa magazine n. 
12/2014; p. 88; n. 05/2017, p. 74). 
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Figure 3. Long-run evolution of racing bicycle and passenger aircraft technology based on 

empirical data 
Note: The racing bicycle is a less complex technology with fewer parasitic technologies than aircraft 

technology. The temporal units on x-axis are years. Period under study is 117 years for bicycle 
technology (1901-2017) and 85 years for aircraft technology (1932-2017). y-axis indicates the Functional 

Measures of Technology standardized. For the aircraft and bicycle technologies, the estimated 
relationships of linear models reveal: for passenger aircraft technology, unstandardized coefficient beta 
β1=0.99, standardized coefficient is β1=5.23 (p-value < 0.001, F=1855.24, sig.=0.001, Adjusted R2 =0.98); for 
racing bicycle technology, unstandardized coefficient is β1=0.89, standardized coefficient is β1=1.92 (p-
value < 0.001, F=429.72, sig.= 0.001, Adjusted R2=0.79). Empirical evidence here also confirms the faster 

long-run evolution of aircraft technology than bicycle technology. Note that in 1932 aircraft is an 
emerging technology in comparison to bicycle that had a higher technological evolution started in 1901 
and in a growing phase. Subsequently, the higher number of parasitic technologies and technological 

interaction in aircraft technology than bicycle technology explains the high long-run rate of evolution of 
aircraft technology: i.e., βpassenger aircraft technology =5.23 >βracing bicycle technology=1.92 

 
6. Predictions of the theory 
Technologies are complex systems composed of interrelated sub-

systems of technology until the lowest level of technological unit (cf., 
Oswalt, 1976; Coccia, 2018; 2019g). Our study of technological host-
parasites coevolution, starting with theory that was further refined with a 
computational model, and finally compared to empirical data and 
statistical analyses, suggests the following predictions: 

1. Higher-level host technologies with many parasitic technologies 
advance rapidly. Technologies with fewer parasitic technologies and a low 
level of interaction with associated technologies improve slowly. 

2. The long-run evolution of a technology depends on the 
behaviorand evolution of associated parasitic technologies; the long-run 
evolution of any technology is not independent of the other technologies 
(technological symbiosis). To put it differently, long-run evolution of a 
specific technology is due to interaction with new parasitic technologies. In 
brief, technological innovation is enhanced by the integration of two or 
more parasitic technologies that generateco-evolution of system 
innovations (cf., Theorem of not independence of any technological 
innovation by Coccia, 2018m).  
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7. Discussion and conclusion 
Scholars argue that technologies and technological change display 

numerous life-like features, suggesting a deep connection with biological 
evolution (Basalla, 1988; Coccia, 2018, 2019g; Erwin & Krakauer, 2004; Solé 
et al., 2011; Wagner & Rosen, 2014). We extend the broad analogy between 
technological and biological evolution to more specifically focus onthe 
potential of technological parasitism, but fully acknowledge it is not a 
perfect analogy; of course there are differences (Ziman, 2000). For studying 
technical change, though, the analogy with parasite biology and ecology is 
a source of inspiration and ideas because it has been studied in such depth 
and provides a logical structure of scientific inquiry.  

The study here proposes that the interactions between technologies in 
complex systems are similar to the biological interaction of host-parasite 
dynamics. In particular, technological host-parasites coevolution is a 
dynamic process that can predict evolutionary pathways of interactive 
technologies in complex systems. 

On the basis of statistical evidence presented in this study, technological 
host-parasites coevolution can explain and generalize, whenever possible, 
some characteristics of the evolution of technology in human society. In 
particular, the results of the analyses here suggest:   

1. Technological host systems with many parasitic technologies 
generate a rapid stepwise evolution of technological host-parasite systems 
not seen in technologies with fewer associated parasitic technologies and a 
low level of technological interaction. 

2. The long-run behavior and evolution of any technology is not 
independent of the other associated parasitic technologies (cf., Coccia, 
2018m).   

3. Studying inter-related or more symbiotic technologies as complex 
systems can help explain aspects of technological and economic change in 
human societies.  

The study documented here makes a unique contribution, for the first 
time to our knowledge, by showing how technologies co-evolve by 
interacting in complex systems of devices and artifacts in a context of host-
parasitic dynamic process. In particular, the theory here suggests a general 
prediction that it may be possible to influence (improve) the long-term 
evolution of technical change by increasing the fundamental interactions 
between parasitic and host technologies. This finding could aid technology 
policy and management of technology to design best practices to support 
mutual symbiotic relationships between a specific host technology and 
associated parasitic technologies directed to enhance the technological 
progress in human society.  

Hence, the analogy of the study here provides an appropriate theoretical 
framework to explain one of the characteristics of the evolution of 
technology. However, the concept of technological evolution departs from 
biological evolution in fundamental ways. In general, technological 
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innovations and their evolution are due to entrepreneurs that seek 
optimality, typically under economic criteria, such as minimization of cost, 
maximization of profit, etc. to achieve the prospect of a monopoly power 
and/or sustain a competitive advantage of firms in markets (cf., Coccia, 
2017e; McNerney et al., 2011; Solé et al., 2013). In contrast to technology, 
living organisms are the result of tinkering that is undirected mutation plus 
a widespread reuse and combination of available elements to build new 
structures (Jacob, 1977). 

In this research context, Valverde (2016, p.5) states that: “Technological 
progress is associated with more complex human-machine interactions.” 
As a matter of fact, humans act as ecosystem engineers, able to change the 
socioeconomic environment and support progress (cf., Solé et al., 2013).  

The idea of a "technological parasitism” or in general of technological 
host-parasites coevolution presented in the study here should not 
necessarily be considered as a general behavior, because it is adequate in 
some cases but less in others because of the vast diversity of technological 
innovations and their interaction in complex systems and socioeconomic 
environments. Nevertheless, the analogy keeps its validity in explaining 
several phenomena of the coevolution of technology in human society. The 
theory of technological host-parasites coevolution suggests some properties 
that are a reasonable starting point for understanding the universal features 
of the coevolution of technologies that leads to technological and economic 
change, though the model of course cannot predict any given paths and 
characteristics of the evolution of technologies with precision. We know, de 
facto, that other things are often not equal over time and space in the 
domain of technology 

Overall, then, the proposed theory here—technological parasitism based 
on the ecology-like interaction between technologies and innovations—
may lay the foundation for development of more sophisticated concepts 
and theoretical frameworks. Future efforts in this study will be directed to 
provide further empirical evidence to better evaluate this new approach 
and to refine the computational model. However, identifying generalizable 
theory at the intersection of engineering, economics, sociology, 
anthropology, and perhaps biology is a non-trivial exercise. Wright (1997, 
p.1562) properly claims that: “In the world of technological change, 
bounded rationality is the rule.” 
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Appendix 

Bicycle innovation data and calculation of the Functional Measure of Technology FMT 
in racing bicycle technology (bicycle efficiency) 
The raw data underlying the assessment of bicycle efficiency improvements is the 

average speeds of several long-running top-level races. Specifically, we have included data 
from eight races: the three grand tours (Giro d’Italia, Tour de France, Vuelta a España), and 
the five one-day classics (Milano-San Remo, Flanders, Paris-Roubaix, Liege-Baston-Liege, 
Tour de Romandie). The oldest of these races was first held in 1892, but recognizably 
modern formats and rules were not used until the early 20th century. Also, the grand tours 
consist of multiple stages (over 20 stages in recent decades), different formats (e.g., 
individual time trials, team time trials, and regular road races), and courses that vary 
significantly over the years (e.g., some years include more climbing). Taken altogether 
though, the average speeds of the winners across the three grand tours (and the one-day 
classics, which are raced on consistent courses) minimizes any effect of year-to-year course 
and weather variations. Note that data from the earliest years and also the war years are 
sparse. Average speeds have improved in the years since 1901 (about 64% faster) due to 
improvements in rider training, faster bicycles –new materials (e.g., carbon fiber) for 
components– (and yes, in some cases, performance-enhancing drugs; Bicycle race data, 
2017).  

Our intent with this data was to isolate insofar as possible the technological 
development of the bicycle. Importantly, though, average speeds of race winners are the 
outcome of many, many factors—and some of those factors that may contribute to faster 
racing through time (such as team tactics) are difficult or impossible to quantify. But it is 
possible to largely control for the most relevant parameter other than the bicycle itself: the 
athlete. For comparison, we also collected data on winning speeds of the Boston Marathon 
data (2017), a running event held since the late 19th century. Marathon speeds have also 
improved, but much more modestly compared to cycling (15% for running). Weighting the 
cycling race speeds by removing the effect of the athlete (using the running data) provides a 
much cleaner assessment of the innovations in bicycle technology. 

Because cycling speeds are generally 2.5-3 times faster than marathon runners, further 
transformation of the speed data was necessary to compare the two sports. First, the power 
generated by the athlete to either run or pedal a bicycle can be reduced to a function of the 
oxygen metabolized to generate that power. If you can calculate the power necessary to run 
a certain speed, you can likewise calculate the speed of a cyclist generating the same power 
(assuming slope and winds are non-factors; those other parameters can be accounted for in 
the math, but it is much more complicated). For example, in 2016, winning cyclists averaged 
40.4 km/h, and a simplified estimate of the power required to maintain that speed is 355 
watts (equation below, note the non-linear relationship between power and speed; because 
of air resistance, large gains in power are necessary for even modest gains in speed). 
Alternately, in that same year the marathon winner ran 19.1 km/h and generated power 
around 339 watts.  

For the early years, cycling speeds and related power estimates were low (e.g., 26 km/h, 
or less than 100 w). Importantly, early 20th century cyclists were not pushing much lower 
power compared to modern cyclists (perhaps 15% less, not almost four times less!). Instead, 
their bikes were less efficient. The difference in power generated by the marathon runner 
and the cyclist any given year provides a reasonable assessment of the efficiency of the 
bicycle. To that end, to generate our metric of bike innovations, we simply subtracted the 
running power from cycling power each year 1901-2017 as follows.   
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How to transform bicycle race speeds into Functional Measures of Technology FMT 
(bicycle efficiency): 

Bicycle Speed Average km/h of the 3 grand tours and 5 one-day Classics 

 

(Giro d’Italia, Tour de France, Vuelta a España; Milano-San Remo, Flanders, Paris-Roubaix, 
Liege-Baston-Liege, Tour de Romandie).Note: data sparse during war years. 

Bicycle Power Power (watts) needed to maintain speed given drag coefficient of 0.25 

Calculated:  𝑃𝑃𝑏𝑏 = 𝐶𝐶×𝑠𝑠3 

  

where: 
Pb= Bicyclepower (watts) 
C = drag coefficient, set to 0.25 
s= speed converted to meters per second 

  
(simplified from Puget, 2015) 

Run Speed km/h of Boston Marathon winner 

Run Power Pace converted to watts for 150 lb (68.2 kg) athlete 

Calculated: 𝑃𝑃𝑟𝑟 =
210
𝑝𝑝 ×

𝑊𝑊
1000×75 

  

where: 
Pr= run power (watts) 
p = pace in minutes/km 

  
W= weight in kg 

  

Note: given economy numbers of 75W/L on the Bicycle and 210ml/kg/km on the 
run (O2 consumption). Converts running pace to O2 consumption, then O2 to 
Bicycle power (Hawley and Noakes, 1992). 

 
Hence, the difference between𝑃𝑃𝑏𝑏 − 𝑃𝑃𝑟𝑟  = FMTand indicates the bicycle efficiency, i.e. the evolution of 

bicycle technology, without the human improvements. 
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Data of technologies and their sources for empirical analyses 

Year 
Tractor 

* 

Farm Tractor 
(mechanical 
efficiency) 

* 

Year 
Locomotive 

* 

Freight 
locomotive 

tractive effort 
in pounds 

* 

Year 
Aircraft 

* 

Passenger 
aircraft 

airspeed 
in miles 
per hour 

* 

Year 
Bicycle/ 

Marathon 
♦† 

Racing 
bicycle 

speed (km/h) 
♦ 

Run 
speed 
Boston 

Marathon 
(km/h) 

† 
1920 52.17 1904 22804 1932 109 1901 25.862 16.94767 
1921 50.95 1905 23666 1933 116 1902 28.088 15.51287 
1922 54.19 1906 24741 1934 127 1903 27.3915 15.67778 
1923 52.25 1907 25781 1935 142 1904 28.8915 16.01666 
1924 53.99 1908 26356 1936 149 1905 28.43767 15.98127 
1925 53.09 1909 26601 1937 153 1906 25.96567 15.27421 
1926 48.03 1910 27282 1938 153 1907 28.01275 17.53255 
1927 48.62 1911 28291 1939 153 1908 27.252 17.37413 
1928 54.95 1912 29049 1940 155 1909 29.26617 14.58353 
1929 56.1 1913 30258 1941 160 1910 26.9586 17.00649 
1930 57.99 1914 31006 1942 159 1911 29.03783 17.87293 
1931 60.64 1915 31501 1943 154 1912 29.561 17.9172 
1932 68.49 1916 32380 1944 156 1913 29.47467 17.43195 
1933 65.58 1917 33932 1945 153 1914 27.85083 17.43195 
1934 63.99 1918 34995 1946 169 1915 27.795 16.69069 
1935 63.94 1919 35789 1947 170 1916 26.69 17.19126 
1936 64.09 1920 36365 1948 176 1917 25.89 17.0351 
1937 62.19 1921 36935 1949 178 1918 25.46 16.89114 
1938 67.01 1922 37441 1950 180 1919 25.22757 16.9666 
1939 68.61 1923 39177 1951 183 1920 27.49457 16.93256 
1940 69.35 1924 39891 1952 189 1921 27.21343 18.22022 
1941 70.79 1925 40666 1953 196 1922 27.68514 18.32352 
1942 

 
1926 41886 1954 204 1923 27.18371 17.60774 

1943 
 

1927 42798 1955 208 1924 26.924 16.91559 
1944 

 
1928 43838 1956 210 1925 27.17057 16.54706 

1945 
 

1929 44801 1957 214 1926 28.47829 17.38009 
1946 

 
1930 45225 1958 219 1927 28.56157 15.78695 

1947 70.25 1931 45764 1959 223 1928 29.32543 16.1135 
1948 71.45 1932 46299 1960 235 1929 28.90957 16.53265 
1949 70.42 1933 46916 1961 252 1930 29.49114 16.35465 
1950 68.95 1934 47712 1962 274 1931 30.54386 15.18261 
1951 69.56 1935 48367 1963 286 1932 32.81586 16.48242 
1952 72.54 1936 48972 1964 296 1933 33.22914 16.76437 
1953 72.12 1937 49412 1965 314 1934 33.02329 16.55969 
1954 69.57 1938 49803 

  
1935 33.42913 16.64315 

1955 71.77 1939 50395 
  

1936 33.86475 16.47527 
1956 72.54 1940 50905 

  
1937 34.38257 16.51109 

1957 74.22 1941 51217 
  

1938 34.30471 16.27405 
1958 74.08 1942 51811 

  
1939 35.11286 17.0084 

1959 73.12 1943 52451 
  

1940 34.7425 17.05231 
1960 74.55 1944 52822 

  
1941 32.742 16.80704 

1961 79.55 1945 53217 
  

1942 33.29125 17.24004 
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Table of the data and their sources of technologies (continued from previous page) 

Year 
Tractor 

* 

Farm Tractor 
(mechanical 
efficiency) 

* 

Year 
Locomotive 

* 

Freight 
locomotive 

tractive effort in 
pounds 

* 

Year 
Aircraft 

* 

Passenger 
aircraft 

airspeed 
in miles 
per hour 

* 

Year 
Bicycle/ 

Marathon 
♦† 

Racing 
bicycle 

speed (km/h) 
♦ 

Run 
speed 
Boston 

Marathon 
(km/h) 

† 
1962 75.41 1946 53735   1943 36.493 17.05806 
1963 76.03 1947 54506   1944 37.4935 16.6742 
1964 82.26 1948 55170 

  
1945 32.538 16.80332 

1965 83.09 1949 56333 
  

1946 33.97471 16.94011 
1966 75.34 1950 57075 

  
1947 34.07475 17.38208 

1967 66.06 1951 58476 
  

1948 35.70538 16.76252 
1968 73.97 1952 59966 

  
1949 36.22757 16.6742 

1969 
 

1953 61339 
  

1950 34.99938 16.585 
1970 

 
1954 63152 

  
1951 36.62014 17.13503 

1971 
 

1955 65005 
  

1952 36.33157 16.66872 
1972 

 
1956 68745 

  
1953 37.15643 18.23335 

1973 
 

1957 61515 
  

1954 35.276 18 
1974 

 
1958 61312 

  
1955 36.63963 18.29704 

1975 
 

1959 61408 
  

1956 37.3525 18.86044 
1976 

 
1960 61314 

  
1957 37.07075 18.07281 

1977 
 

1961 61969 
  

1958 36.83288 17.3523 
1978 

 
1962 61415 

  
1959 38.35038 17.74142 

1979 
 

1963 61533 
  

1960 38.93425 17.96806 
1980 

 
1964 62311 

  
1961 36.99463 17.62409 

1981 
 

1965 63096 
  

1962 37.34988 17.6057 

  
1966 70900 

  
1963 38.02814 18.21804 

  
1967 65267 

  
1964 38.827 18.08572 

  
1968 

   
1965 38.30375 18.54046 

  
1969 

   
1966 38.31588 18.45487 

      
1967 37.998 18.64972 

Note. Sources of data.  
*Sahal (1981, pp. 341-346; cf. also originally sourced from trade literature pp. 321-330) 
♦Bicycle race data (2017). [Retrieved from].  
†Boston Marathon data (2017) from the race organizer’s Boston Athletic Association website [Retrieved 
from].  
For complete dataset see sources of data above. 
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