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Abstract. There is a conception that Boltzmann-Gibbs statistics cannot yield the long tail 

distribution. This is the justification for the intensive research of nonextensive entropies 

(i.e. Tsallis entropy and others). Here the error that caused this misconception is explained 

and it is shown that a long tail distribution exists in equilibrium thermodynamics for more 

than a century.  
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1. An Introduction to 
here are two typical distributions observed in the macroscopic world. The 

first one is the bell-like function, which is a result of the canonic 

distribution, and the second one is the long tail, which is a result of a power 

law distribution. While some statistical quantities are bell-like (the human height 

etc.), many others, like the human wealth etc. have a long tail distribution. The 

long tail distribution is as common in nature as the bell-like distribution. 

Apparently, many believe that the long tail distribution cannot be obtained from 

equilibrium thermodynamics. The reason for this misconception is the way the 

canonic distribution is derived in some textbooks (Back, 2009), namely to define a 

function as followed: 
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 yields the canonic distribution. Here p is the 

probability, E is the energy, α and β are Lagrange multipliers and W is the number 

of microstates. 

Eq. (1) looks exact, as the first term on the RHS represents the (-) Gibbs 

entropy, the second term is equivalent to the total number of particles, and the third 

term is the total amount of energy of the system. At a first glance, no 

approximations are made, and therefore, the only possible solution that maximizes 

the entropy for a given number of particles and a given amount of energy is the 

canonic distribution (Back, 2009). This implies that there is no way to obtain a 

power law distribution by maximizing Boltzmann-Gibbs entropy. 

This is probably the reason for the enormous effort made to "generalize" the 

second law. The idea was to change the concept of entropy in a way that Eq. (1) 
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will yield a power law distribution. This is the justification for Tsallis entropy 

(Tsallis, 1988), Renyi entropy (Lenzi, 2000), and more… The "entropy" of the 

highest impact is Tsallis entropy, which received, since it was suggested in 1988, 

according to Google scholar, more than 1250 citations. This warm welcome by the 

"community" is surprising as Tsallis entropy is nonextensive, which means a 

system in disequilibrium. The physical explanation for the nonextensivity is long-

range interactions, which also implies disequilibrium. 

Therefore, accepting nonextensive entropy means giving up the most important 

concept of thermodynamics, namely the tendency of any system to reach 

equilibrium. In other words, nonextensivity means giving up the second law of 

thermodynamics altogether!  

Hereafter, it is shown that the assumption that canonic distribution is the only 

solution that maximizes Boltzmann-Gibbs entropy under the constraints of Eq. (1) 

is erroneous.  

Eq. (1) should be written, 
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Namely, Gibbs entropy should be summed over all possible different 

configurations W of the ensemble (the microstates).  However, the summation over 

the energies ii Ep  should be done over the states N, as the distribution that we are 

looking for is the distribution of energy among states and not microstates (all the 

microstates have equal energy!). Usually, W  and N are different numbers. An 

ensemble of N states and P particles where NP  , and no more than one particle 

is allowed in a state, has a number of configurations,  
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Applying Stirling formula and using Boltzmann entropy WS ln , we obtain 

that  

        

)}1ln()1(ln{ ppppNS  , where 
N

P
p  .  

 

Or in Gibbs formalism, 
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In the approximation 1p , )1ln()1( pp  vanishes and the expression 
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  is entropy.  

In this case Eq. (2) becomes, 
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yields the canonic distribution. 
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The conclusion up to this point is that the canonic distribution is not a law of 

nature, and it exists only at low occupation number systems. 

Since, Eq. (1) is not always true, the legitimate way to look for other 

distributions is to calculate the number of microstates and their probabilities rather 

than changing the expression of the entropy. 

Hereafter, it is shown that in fact, a power law distribution and its appropriate 

statistics exist in physics for over a century. 

In the general case (neglecting degeneracy), we have to count all the 

configurations of P particles in N states for any value of n (here we replace the 

symbol p by n as we allow 1
N

P
). We follow the footsteps of Planck's seminal 

work from Planck (1901), namely, 
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We apply again the Stirling formula as was done by Planck and obtain that

}ln)1ln()1{( nnnnNS  , or in Gibbs formalism,  
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(Some may recall that this is Planck's derivation). If 1n , we obtain again 

that the entropy is i
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 , and therefore the canonic energy distribution is 

obtained as a private case. Since n is now interpreted as a number and not a 

probability we omit the second term in Eq.  (2). By substituting the entropy of Eq. 

(6)  in Eq. (2) 
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we obtain the Planck equation namely, 
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Similarly, substituting the entropy calculated from the number of microstates of 

Eq. (3) in Eq. (7) yields the Fermi-Dirac distribution. 

We designate ii E  and we plot inln  versus iln  and we see that when

1n , Planck equation yields a power law distribution with a slope –1.  
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Figure1. A log-log plot of the occupation number versus the relative energy. 

 

In Fig.1 it is seen that when the number of particles is higher than the number of 

states (high occupation numbers), a power low distribution is obtained, and at low 

occupation numbers the canonic distribution is obtained. In the classic Rayleigh-

Jeans approximation the distribution of photons in a radiation mode is a long-tail 

distribution. In fact, the same statistics was used recently to derive Benford's law 

and the wealth distribution (Kafri, & Kafri, 2013; Kafri, 2009, 2016).   
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